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Analytical systematic approximate method of a two-state dissipative system
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Occupation probability and changes of the environment in a dissipative two-state system have been inves-
tigated using a systematic approximate method. This method explores the tunneling dynamics through a system
state vector with manifest physical meanings and provides a deep microscopic insight into the dynamical
behaviors of the system.

PACS numbdps): 02.70—c, 03.65-w

I. INTRODUCTION
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A problem that is of general interest in both physics and '
chemistry is that of a quantum mechanical system tunneling N
between two states and subjects to a dissipative coupling to +Uz2i Ai(wi)(a; +a). @
environment degree of freedom. Examples of this type of
system abound; they include the tunneling of defects in me-
tallic glasseg1], and the motion of the total flux in a super-
conducting quantum interference device between two met
stable fluxoid statef2]. One of the most intriguing features : ! . ) . :
of this model is a dynamical phase transition between coherI-unnellng matrix elc'em.ept anelis a bias. The enywonment 1S
ent tunneling and incoherent relaxation. This was first pref€Presented by an infinite set of harmonic oscillatébeled
dicted by Chakravarty and co-workeii3,4], and later con- DY the indexi) with m; and frequency spectrum; coupling
firmed by experiments on interstitial tunneling in niobium linearly to the coordinat® = Ai(w;) o, of the two-state sys-
[5]. tem, whereA;(w;) = 3(c;/V2m;w;) andc; is the coupling to

A great deal of work has been carried out over the last teihe ith oscillator. We restrict our discussion of the model to
years in order to understand the dynamics of this apparentlthe zero and so-called Ohmic regime, where the spectral den-
simple model. Extensive calculations based on the Feymarsity of the environment is given byl(w)=2m7a exp
Vernon path integral formalism within the NIBA have (—w/w.), with o, being the high energy cutoff and the
yielded reliable information for weak dissipati¢a]. In ad-  dimensionless parameter characterizing the strength of the
dition to such direct attempts at calculating dynamics for thegissipation. The scaling limib.> A is characteristic of tun-
spin-boson model, it has proved fruitful to exploit analogiesneling in solids and, as shown by scaling arguni&], the
between this model and several other models, including thgyhmic spin-boson model has nontrivival dynamics only for
inverse-square Ising modgb], and the anlsqtroplc K_ondo a<1l and renormalized tunneling frequencyA,
model[?_]. It has been shown that the partition functions of:A(A/wC)a(ka) is the only frequency scale of the dynam-
these different models can be put into correspondence ar]gs at zero temperature other thag.

the parameters of the models related. This connection en-
ables us to determine the thermodynamics of this model from
guantum Monte Carlo methoa@MC).

But most QMC simulations fail to give a detailed micro-
scopic analysis to the interaction between the system and
environment, especially to variations of the environment. In  In particular, we suppose the phonon is the energy quanta
this paper, we describe a systematic approximate method f@f the environment so that the enviroment now is regarded as
calculating the real-time dynamics of dissipative quantuman infinite phonon bath in which most phonons are in ground
systems and use it to investigate the dynamical behaviors atate and the transition from coherence to incoherence is in
zero temperature. Since we can give the result in analytifact a process that decreasing system energy makes a certain
form, this method draws out a clear microscopic physicanumber of phonons in ground state excited. The system is
picture for the system dynamics through a systemdnitially held in o,=1 for some large negative time. This can
environment state vector based on a set of resonable supple achieved by applying a strong bias fer0. At time zero
sitions. It not only predicts the transition from coherence tothe constraint is released and for 0 the dynamics is gov-
incoherence accurately, but also simulates the energy transferned by the spin-phonon Hamitonian. In the direction of this

Here o;,i=X,y,z are Pauli spin matrices, the two states of
Ghe system correspond t@,=1 and o,=—1 is the bare

Il. DISCUSSION OF DYNAMICAL BEHAVIORS

between environment and the system successfully. idea, we resolve several physical quantities and give a rel-
Dissipative two-state systems are often described by thevant discussion about their dynamical behaviors for small
spin-boson model: coupling strength (&0a<0.5).
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Omitting the term=;3 w; in Eq. (1), we rewrite the spin- n
phonon Hamitonian as fl(t)+2i gi(Day
|ty= ) 3
O'Z+Z wiafai-i-o'zz Ai(afr-i-ai). fZ(t)+EI gl(t)al+
| I
2

gccorgmg to the previous dl_scussmn, here the term here |) denotes e){rfjaj(t)a-*]IO% which has the basic
iw;a; a; represents the excited phonon energy an i N=ail), (a = '| *. the average phonon
o,2i(a;" +4a;) does the interaction between system and exProperties a )=ail), (3 _+< a4 e ge pnol
cited phonons. We also notice that in the Hamitonian number in coherent stgte@*aaj aj[)=|a|*[10], andg;(t) is
there are two marked features: the phonon number is ndf'€ SPin-phonon coupling strength. &0, there are so few
conservative; there is linear term af,a . So the solution ©€xcited  phonons  that gi(t)|t=0_:0’“j(t)|t=0:9-
of coherent form may be suitable for Hamitonié. Mean- ~ j(1).8i(1),1(t),f2(t) are to be determined by the Schro
while, the dissipative interaction’s being weak effect and thedinger equation as follows.
spin independence of electron-phonon interaction are consid- Substituting|t) into the Schrdiger equationi(d/dt)[t)
ered. Finally, we suppose the approximate state vector of the H|t) and making an approximation omitting;"a;"|)
whole system and environment as terms, we get

€

H=—Ao,+ >

; i°1<t>+2i [gi() +Fa(t)ai(t)]a)t
'EDi' _ ), (4)
fz(t)+§i: [Gi(t) + (D () ]a’

0+ 2 gi(ha) f0+ 2 gi(hay 2 oifiOei(af + 2 oigi(a
Hlty=—A D+ [+ )
O+ giva’ —f2)-2 gi(ha) 2 ofy(Daiva + 2 oigi(va
2 favAa) 2 Al aO+gi(0]+ 2 Ajaj(Dgi(ha)
¥ I+ ' ). (5)
- fyHAa -2 Ai[f2<t>ai<t>+gi(t>]—; Aja;(D)gi(t)a;

Comparing corresponding coefficients [0f a;"|) terms  Because the phonon bath possesses infinite degrees of free-
and making ¢ (t)=f,(t) +f,(t),do(t)=F,(t)—f,(t), we dom, it is reasonable to adopt the transformati@n
obtain the following self-contained relations: —[I(w)dw,A—A(w),0i(t) —g(w,1),qi(t) - a(w,t). Af-
ter the transformation, we get the following group of
differential-integrate equations:

1B1(0= 410+ 580+ S Ado(Da(t), (6)

- €
1 $2(D)=Ada(D)+ 5 A2+ 2 ALba(Dai()+2gi(D)], B1(0=~Aba(0+ S (0
(7
1o(t) aj(t) = €0;(1) + wja; (1) po(t) + Aj by (1) +fA(w)¢z(t)a(w,t)J(w)dw, (10
+20(1) 2 ai(DA;, ®8)
. €
219;(t)= —2A0; (1) + 2;g;(t) + ©; 1(t) a; (1) + A (1) 1a(t)=Ado(t) + §¢1(t)+f Alw)[ ¢1(t) a(w,t)

— 11 () (1) (9) +29(w,1)]d(w)dw, (12)
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A(t)

FIG. 1. P(t) at «—0.41 andT=0 in the case that only the first
order effect is considered. Here the data are Adw.=1/50, e
=0.

1ho(t) a(w,1) = €g(w,1) + wa(w,t) do(t) + A(w,1) py(1)
+29(w,t)f a(w,)A(w)d(w)dw, (12
219(w,t)=—2A0(w,t) +20g(w,t) + wd, () a(w,t)

+A(0,1) (1) — 11 (D) a(w,1). (13

The dynamical quantity which is most directly relevant in

the phenomena of “macroscopic quantum coherence” is the

expectation value ofo,), namely, occupation probability
p(t)=(o,) [11]. The analytic expression fop(t) is
C1(t)/D4(t), here

Ca(t)=fo(OF (1) = Fo(D)F5 (1)

+[f’{<t>—f§<t>]f 9.0 a* (0,)3(0)do

+[f1(t)—f2(t)]f g% (0,t)a(w,t))(w)do,

(14
Dy(t)=f()FT () + () f5 (1) +[F1 (1)
+f’2°(t)]J g(w,t)a*(w,t)I(w)dw
RO+ (01 [ 0% (0.Da(0.09(@)do
+2J 0" (w,1)g(w,t)J(w)dw. (15

Figure 1 shows the numerical result foft) at zero tem-
perature and fow=0.41, where the oscillations disappear
completely. Past that value, we are not able to resplitg
correctly. Comparing Fig. 1 with the result of NIBAZ2], we
find no qualitive differentiation between them. But the value
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has obvious divergence from the Toulouse limit.€0.5).

This dissatisfying result can be explained by the form of the
state vector|t). Since the ratio of the contribution of the
second order effect to that of first order at the critical point is
about 0.20, which is not a small quantity, the form|of is

not accurate enough. To tackle this problem, the second spin-
phonon interaction is taken into accoufit) now can be
written as

fO+ 2 guva+ 2 hy(hara;
ty= 1)
fat)+ 2 ga(Da’ + 2 hy(a'a)
(16)

Again, the parameters in the state vector are to be determined
by the same method. After a series of derivations similiar to
those in the case of the state vect8y, the following equa-
tions are obtained:

120 = = A0+ SHy(0)+ f A()[ f1(D)a(w.t)
+91(0,)3(w)do, (17
0= 81,0 5120 [ A0 a(o.
+02(w,t) [J(w)dw, (18)
I[g1(@,t)+fy(Da(w,1)]

—— Agy(@,)+ 5 Gy(0,) + wlgy(@,) +2(1)
Xa(w,t)]+A(w)f(t)+ J A(w)gi(w,t)a

X(w,t)J(w)dw+ f [h(w,wq,t) +h(w,o,t)]
XA(w1)I(w;)dwy, (19

1[g2( )+ fo(t)a(w,t)]

=~ Agy(0,1)~ 5 8o+ 0[Ga(@,t) + fo(1)
Xa<w,t>]—A<w>f2<t>—f Alwp) a(w1,085(w,1)

XJ(wq)dw,— J [h(w,wq,t) +h(wq,o,1)]

XA(w1)I(w;)dwy, (20

I[h(w1,02,0)+g1(wy, 1) a(ws,t)]
=—Ah(wq,w5,t)

+ gh(wl,wz,t) + wl[h(a)l,wz,t) + h(wz,wl,t)]
twia(o,t)gi(w,t) +A(w1)d1(ws,t)

+h(w1,w2,t)f A(w)a(w,t)(w)dw, (21
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I[h(wy,w5,1)+go(wy, ) @(wy,1)]=—Ah(wy,w,,t)— gh(wl-w21t)+wl[h(wl-wzat)+h(wz,wlat)]

tora(w1,1)g2(w,1) —A(w1)gr(wp, 1) — h(wlvaat)f Alw)a(w,t)I(w)do.
(22

Now

t)= Ay(t) —B,(1)
PO = A0+ B0+ 2C,(0)

(23
where
Az(t)=f1(t)f’f(t)+ff(t)f h(wlywz,t)a*(wlyt)a*(wz,t)J(wl)J(wz)dwldwerfl(t)f 91 (w,H) a(w,)I(w)dw
+ff(t)j gl(w,t)a*(w,t)J(w)dwﬂLf 91(w.t)9’1’(w,t)3(w)dw+f 91 (@1,0)01(w2,t) a* (w3, ) a(wy,1)
X‘J(wl)J(wZ)dwldw2+f Q’I(wl.t)h(wl.wz.t)a*(wz,t)J(wl)J(wz)dwldwerj 91 (01,0h(wz,01,1)
><01*(wz,t)J(wl)J(wz)dwldwerf 91 (01,0)h(wz,03,) @ (w3,t) a* (w3, 1) a(w1,1)I(w1)I(@2)I(w3)
deldwzdw3+f1(t)j h*(wl,w2,t)a(wl,t)a(w2,t)J(wl)J(wz)dwldw2+f h* (w1,w5,t1)g1(w5,t)

><a(wl,t)J(wl)J(wz)dwldw2+f h*(wl,w2,t)gl(wz,t)a(w2,t)J(wl)J(wz)dwldwz-i-f h*(wl,wz,t)

Xg1(w3,t)e* (w3, t)a(w, ) a(wy,1)I(w1)I(w;)I(ws)dwdw,dws, (24)
Ba(t)=Ax(f1—f2,01—00), (25
Cz(t)=2“ h*(w1,02,)h(01,02,1)I(01)I(w;)dwido,
+f h*(w1,02,)h(wz,03,1) &* (03,t) a(w1,1) I(ws3)I(w2) (1) dodwdws
+f h* (@1,02,)N(w1,03,1) a* (0g,t) a(wy,1) J(@1)I(@2) I wg)dodwdw;
+f h*(@1,02,)N(wg,02,1) &* (w3,t) a(w1,1) I(@1,1)I(w1) J(w,) J(w3) dw dw,dws
+f h*(w1,02,)N(wz,01,1) &* (03,t) a(wy,1) I(w1)I(w2) I w3)dw dwdws

+f h* (w1, w2, 1) h( w3, w4,t) a* (w3, t) a* (wa,t) @(w1,t) d(wy,1)I(@1)I(wy) I w3)I(ws)dwdwdwzdw,)|.

(26)



PRE 61 ANALYTICAL SYSTEMATIC APPROXIMATE METHOD OF . .. 4799

1 6 [
i —a=047 [
08 :_ \’ —a=0.4 5 [
I —a=0.35 [
06 | --x=0.3 I
[ 41
04 | i
& : € 3
02 | < 7
of 2 |
0.2 1}
_0.4 : | | | \- | L | Lo |
01 2 3 4 5 6 7 8 9 10 0

Ar(t)

FIG. 2. Occupation probability for various damping<<0.5,
Alw,=1/50, e=0.

Ac(t)

FIG. 4. The variation of phonon number for various damping;
Alw.=1/50, €=0.
Through the new state vector, we depict the numerical

result for p(t) at zero temperature and for small values Ogyrength increases, the system energy decreases at a higher
<a<0.5 (Fig. 2. From Fig. 2 we can observ_e obvious co- speed. Ata=0.47, the speed reaches its maximum. Like-
herent and damped oscillations. With the increaseaof \jise the phonon number increases in the same pattern. As
quantum coherence becomes increasingly short-lived. How-_, oo the phonon bath gets to a new thermoequilibrium.
ever, the limitation of our method and accuracy of our dataFigure 2 just is the macroscopic correspondence to Fig. 4.
make it impossible for one to resqlvg oscillationspgf) for The phonon numbens(t) of three special frequencies are
a>0.47. From the obvious deviation af. that resulted  shown in Fig. 5. We notice that there exist great variations
from a dlf_ferent state ve(_:tor it is _clear that the _second eff_ec;Or different w. At w,, the phonon number is almost zero.
plays an important role in affecting the dynamical behaviorrpis result provides a reason for the high energy cutoff: near
of the system. An expanded view of decaym(tt) in the o apove thew,, the phonon number is so small that its

vicinity of the critical valuea=0.5 is provided in Fig. 3. In - contripution to the dynamical behavior of the system can be
this region, comparing results for different cutoff frequenciespeglected.

w¢, We observe marked scaling behavior.
To investigate the energy transfer between the system and

phonons, another quantity(t)=(=;a"a;), excited phonon Il. CONCLUSION
number, is calculated. Its numerical result is shown as Fig. 4. ) ) ) )
When we associate Fig. 2 and Fig. 4 with Hamitonian In conclusion, we have introduced a systematic approxi-

a clear energy transfer picture emerges. As the couplin§iate method for the dynamics of dissipative quantum sys-
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FIG. 3. Scaling behavior of the occupation probability fer FIG. 5. A log plot of phonon number of three special frequen-

=0.48; €=0. cies versus\,(t) for A/w.=1/50; «=0.47, €=0.
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tems and used it to explore the dynamical behavior, for théion causes the transition from two state to single state. It is
parameter rangad/w.=50100 at < #<0.5 without a bias. expected that when the highex@) order effect is added
We found that the critical point at which coherent oscillationinto the state vector, more accurate results will be obtained,
turns into incoherent exponential decay occurs in the vicinityand this process can be developed further indefinitely.

of a,=0.5. Most important, our method provides a micro- In view of the above, we can draw the conclusion that in
scopic decription for the dynamical behavior of this systemthe dissipative two-state system, our method is valid in small
through spin-boson interaction, some bosons in the groundoupling, compared to the QMC or NIBA method. This
state are stimulated to excited states; the dissipative interamight be useful for other quantum dissipative systems.
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