
na,

PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Analytical systematic approximate method of a two-state dissipative system
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Occupation probability and changes of the environment in a dissipative two-state system have been inves-
tigated using a systematic approximate method. This method explores the tunneling dynamics through a system
state vector with manifest physical meanings and provides a deep microscopic insight into the dynamical
behaviors of the system.

PACS number~s!: 02.70.2c, 03.65.2w
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I. INTRODUCTION

A problem that is of general interest in both physics a
chemistry is that of a quantum mechanical system tunne
between two states and subjects to a dissipative couplin
environment degree of freedom. Examples of this type
system abound; they include the tunneling of defects in m
tallic glasses@1#, and the motion of the total flux in a supe
conducting quantum interference device between two m
stable fluxoid states@2#. One of the most intriguing feature
of this model is a dynamical phase transition between co
ent tunneling and incoherent relaxation. This was first p
dicted by Chakravarty and co-workers@3,4#, and later con-
firmed by experiments on interstitial tunneling in niobiu
@5#.

A great deal of work has been carried out over the last
years in order to understand the dynamics of this appare
simple model. Extensive calculations based on the Feym
Vernon path integral formalism within the NIBA hav
yielded reliable information for weak dissipation@4#. In ad-
dition to such direct attempts at calculating dynamics for
spin-boson model, it has proved fruitful to exploit analog
between this model and several other models, including
inverse-square Ising model@6#, and the anisotropic Kondo
model @7#. It has been shown that the partition functions
these different models can be put into correspondence
the parameters of the models related. This connection
ables us to determine the thermodynamics of this model f
quantum Monte Carlo method~QMC!.

But most QMC simulations fail to give a detailed micr
scopic analysis to the interaction between the system
environment, especially to variations of the environment.
this paper, we describe a systematic approximate method
calculating the real-time dynamics of dissipative quant
systems and use it to investigate the dynamical behavio
zero temperature. Since we can give the result in anal
form, this method draws out a clear microscopic physi
picture for the system dynamics through a syste
environment state vector based on a set of resonable su
sitions. It not only predicts the transition from coherence
incoherence accurately, but also simulates the energy tran
between environment and the system successfully.

Dissipative two-state systems are often described by
spin-boson model:
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H52Dsx1
e

2
sz1(

i
v i S ai

1ai1
1

2D
1sz(

i
Ai~v i !~ai

11ai !. ~1!

Here s i ,i 5x,y,z are Pauli spin matrices, the two states
the system correspond tosz51 and sz521 is the bare
tunneling matrix element ande is a bias. The environment i
represented by an infinite set of harmonic oscillators~labeled
by the indexi ) with mi and frequency spectrumv i coupling
linearly to the coordinateQ5Ai(v i)sz of the two-state sys-
tem, whereAi(v i)5 1

2 (ci /A2miv i) andci is the coupling to
the i th oscillator. We restrict our discussion of the model
the zero and so-called Ohmic regime, where the spectral d
sity of the environment is given byJ(v)52pa exp
(2v/vc), with vc being the high energy cutoff anda the
dimensionless parameter characterizing the strength of
dissipation. The scaling limitvc@D is characteristic of tun-
neling in solids and, as shown by scaling argument@8,9#, the
Ohmic spin-boson model has nontrivival dynamics only
a,1 and renormalized tunneling frequencyD r

5D(D/vc)
a(12a) is the only frequency scale of the dynam

ics at zero temperature other thanvc .

II. DISCUSSION OF DYNAMICAL BEHAVIORS

In particular, we suppose the phonon is the energy qua
of the environment so that the enviroment now is regarded
an infinite phonon bath in which most phonons are in grou
state and the transition from coherence to incoherence i
fact a process that decreasing system energy makes a ce
number of phonons in ground state excited. The system
initially held in sz51 for some large negative time. This ca
be achieved by applying a strong bias fort,0. At time zero
the constraint is released and fort.0 the dynamics is gov-
erned by the spin-phonon Hamitonian. In the direction of t
idea, we resolve several physical quantities and give a
evant discussion about their dynamical behaviors for sm
coupling strength (0,a,0.5).
4795 ©2000 The American Physical Society
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Omitting the term( i
1
2 v i in Eq. ~1!, we rewrite the spin-

phonon Hamitonian as

H52Dsx1
e

2
sz1(

i
v iai

1ai1sz(
i

Ai~ai
11ai !.

~2!

According to the previous discussion, here the te
( iv iai

1ai represents the excited phonon energy a
sz( i(ai

11ai) does the interaction between system and
cited phonons. We also notice that in the Hamitonian~2!
there are two marked features: the phonon number is
conservative; there is linear term ofai ,ai

1 . So the solution
of coherent form may be suitable for Hamitonian~2!. Mean-
while, the dissipative interaction’s being weak effect and
spin independence of electron-phonon interaction are con
ered. Finally, we suppose the approximate state vector o
whole system and environment as
d
-

ot

e
id-
he

ut&5S f 1~ t !1(
i

gi~ t !ai
1

f 2~ t !1(
i

gi~ t !ai
1
D u& ~3!

where u& denotes exp@(jaj(t)aj
1#u0&, which has the basic

properties aj u&5a j u&, ^uaj
15^ua j* ; the average phonon

number in coherent state is^uaj
1aj u&5uau2 @10#, andgi(t) is

the spin-phonon coupling strength. Att<0, there are so few
excited phonons that gi(t)u t5080,a j (t)u t5080.
a j (t),gi(t), f 1(t), f 2(t) are to be determined by the Schr¨-
dinger equation as follows.

Substituting ut& into the Schro¨diger equationı(]/]t)ut&
5Hut& and making an approximation omittingai

1aj
1u&

terms, we get
ı
]

]t
u&8ıS ḟ 1~ t !1(

i
@ ġi~ t !1 f 1~ t !ȧ i~ t !#ai

1

ḟ 2~ t !1(
i

@ ġi~ t !1 f 2~ t !ȧ i~ t !#ai
1
D u&, ~4!

Hut&82DS f 2~ t !1(
i

gi~ t !ai
1

f 1~ t !1(
i

gi~ t !ai
1
D u&1

e

2S f 1~ t !1(
i

gi~ t !ai
1

2 f 2~ t !2(
i

gi~ t !ai
1
D u&1S (

i
v i f 1~ t !a i~ t !ai

11(
i

v igi~ t !ai
1

(
i

v i f 2~ t !a i~ t !ai
11(

i
v igi~ t !ai

1
D u&

1S (
i

f 1~ t !Aiai
1

2(
i

f 2~ t !Aiai
1
D u&1S (

i
Ai@ f 1~ t !a i~ t !1gi~ t !#1(

i j
Aja j~ t !gi~ t !ai

1

2(
i

Ai@ f 2~ t !a i~ t !1gi~ t !#2(
i j

Aja j~ t !gi~ t !ai
1
D u&. ~5!
free-

of
Comparing corresponding coefficients ofu&, ai
1u& terms

and making f1(t)5 f 1(t)1 f 2(t),f2(t)5 f 1(t)2 f 2(t), we
obtain the following self-contained relations:

ıf 1̇~ t !52Df1~ t !1
e

2
f2~ t !1(

i
Aif2~ t !a i~ t !, ~6!

ıf 2̇~ t !5Df2~ t !1
e

2
f1~ t !1(

i
Ai@f1~ t !a i~ t !12gi~ t !#,

~7!

ıf2~ t !ȧ j~ t !5egj~ t !1v ja j~ t !f2~ t !1Ajf1~ t !

12gj~ t !(
i

a i~ t !Ai , ~8!

2ıġ j~ t !522Dgj~ t !12v jgj~ t !1v jf1~ t !a j~ t !1Ajf2~ t !

2ıf1~ t !ȧ j~ t !. ~9!
Because the phonon bath possesses infinite degrees of
dom, it is reasonable to adopt the transformation( i

→*J(v)dv,Ai→A(v),gi(t)→g(v,t),a i(t)→a(v,t). Af-
ter the transformation, we get the following group
differential-integrate equations:

ıḟ1~ t !52Df1~ t !1
e

2
f2~ t !

1E A~v!f2~ t !a~v,t !J~v!dv, ~10!

ıḟ2~ t !5Df2~ t !1
e

2
f1~ t !1E A~v!@f1~ t !a~v,t !

12g~v,t !#J~v!dv, ~11!
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ıf2~ t !ȧ~v,t !5eg~v,t !1va~v,t !f2~ t !1A~v,t !f1~ t !

12g~v,t !E a~v,t !A~v!J~v!dv, ~12!

2ıġ~v,t !522Dg~v,t !12vg~v,t !1vf1~ t !a~v,t !

1A~v,t !f2~ t !2ıf1~ t !ȧ~v,t !. ~13!

The dynamical quantity which is most directly relevant
the phenomena of ‘‘macroscopic quantum coherence’’ is
expectation value of̂ sz&, namely, occupation probability
p(t)5^sz& @11#. The analytic expression forp(t) is
C1(t)/D1(t), here

C1~ t !5 f 1~ t ! f 1* ~ t !2 f 2~ t ! f 2* ~ t !

1@ f 1* ~ t !2 f 2* ~ t !#E g~v,t !a* ~v,t !J~v!dv

1@ f 1~ t !2 f 2~ t !#E g* ~v,t !a~v,t !J~v!dv,

~14!

D1~ t !5 f 1~ t ! f 1* ~ t !1 f 2~ t ! f 2* ~ t !1@ f 1* ~ t !

1 f 2* ~ t !#E g~v,t !a* ~v,t !J~v!dv

1@ f 1~ t !1 f 2~ t !#E g* ~v,t !a~v,t !J~v!dv

12E g* ~v,t !g~v,t !J~v!dv. ~15!

Figure 1 shows the numerical result forp(t) at zero tem-
perature and fora50.41, where the oscillations disappe
completely. Past that value, we are not able to resolvep(t)
correctly. Comparing Fig. 1 with the result of NIBA@12#, we
find no qualitive differentiation between them. But the val

FIG. 1. P(t) at a20.41 andT50 in the case that only the firs
order effect is considered. Here the data are forD/vc51/50, e
50.
e

has obvious divergence from the Toulouse limit (ac50.5).
This dissatisfying result can be explained by the form of
state vectorut&. Since the ratio of the contribution of th
second order effect to that of first order at the critical poin
about 0.20, which is not a small quantity, the form ofut& is
not accurate enough. To tackle this problem, the second s
phonon interaction is taken into account.ut& now can be
written as

ut&5S f 1~ t !1(
i

g1i~ t !ai
11(

i j
hi j ~ t !ai

1aj
1

f 2~ t !1(
i

g2i~ t !ai
11(

i j
hi j ~ t !ai

1aj
1
D u&.

~16!

Again, the parameters in the state vector are to be determ
by the same method. After a series of derivations similiar
those in the case of the state vector~3!, the following equa-
tions are obtained:

ı ḟ 1~ t !52D f 2~ t !1
e

2
f 1~ t !1E A~v!@ f 1~ t !a~v,t !

1g1~v,t !#J~v!dv, ~17!

ı ḟ 2~ t !52D f 1~ t !2
e

2
f 2~ t !2E A~v!@ f 2~ t !a~v,t !

1g2~v,t !#J~v!dv, ~18!

ı@ ġ1~v,t !1 f 1~ t !ȧ~v,t !#

52Dg2~v,t !1
e

2
g1~v,t !1v@g1~v,t !1 f 1~ t !

3a~v,t !#1A~v! f 1~ t !1E A~v!g1~v,t !a

3~v,t !J~v!dv1E @h~v,v1 ,t !1h~v1 ,v,t !#

3A~v1!J~v1!dv1 , ~19!

ı@ ġ2~v,t !1 f 2~ t !ȧ~v,t !#

52Dg1~v,t !2
e

2
g2~v,t !1v@g2~v,t !1 f 2~ t !

3a~v,t !#2A~v! f 2~ t !2E A~v1!a~v1 ,t !g2~v,t !

3J~v1!dv12E @h~v,v1 ,t !1h~v1 ,v,t !#

3A~v1!J~v1!dv1 , ~20!

ı@ ḣ~v1 ,v2 ,t !1g1~v1 ,t !ȧ~v2 ,t !#

52Dh~v1 ,v2 ,t !

1
e

2
h~v1 ,v2 ,t !1v1@h~v1 ,v2 ,t !1h~v2 ,v1 ,t !#

1v1a~v1 ,t !g1~v2 ,t !1A~v1!g1~v2 ,t !

1h~v1 ,v2 ,t !E A~v!a~v,t !J~v!dv, ~21!
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ı@ ḣ~v1 ,v2 ,t !1g2~v1 ,t !ȧ~v2 ,t !#52Dh~v1 ,v2 ,t !2
e

2
h~v1 ,v2 ,t !1v1@h~v1 ,v2 ,t !1h~v2 ,v1 ,t !#

1v1a~v1 ,t !g2~v2 ,t !2A~v1!g2~v2 ,t !2h~v1 ,v2 ,t !E A~v!a~v,t !J~v!dv.

~22!

Now

p~ t !5
A2~ t !2B2~ t !

A2~ t !1B2~ t !12C2~ t !
, ~23!

where

A2~ t !5 f 1~ t ! f 1* ~ t !1 f 1* ~ t !E h~v1 ,v2 ,t !a* ~v1 ,t !a* ~v2 ,t !J~v1!J~v2!dv1dv21 f 1~ t !E g1* ~v,t !a~v,t !J~v!dv

1 f 1* ~ t !E g1~v,t !a* ~v,t !J~v!dv1E g1~v,t !g1* ~v,t !J~v!dv1E g1* ~v1 ,t !g1~v2 ,t !a* ~v2 ,t !a~v1 ,t !

3J~v1!J~v2!dv1dv21E g1* ~v1 ,t !h~v1 ,v2 ,t !a* ~v2 ,t !J~v1!J~v2!dv1dv21E g1* ~v1 ,t !h~v2 ,v1 ,t !

3a* ~v2 ,t !J~v1!J~v2!dv1dv21E g1* ~v1 ,t !h~v2 ,v3 ,t !a* ~v2 ,t !a* ~v3 ,t !a~v1 ,t !J~v1!J~v2!J~v3!

3dv1dv2dv31 f 1~ t !E h* ~v1 ,v2 ,t !a~v1 ,t !a~v2 ,t !J~v1!J~v2!dv1dv21E h* ~v1 ,v2 ,t !g1~v2 ,t !

3a~v1 ,t !J~v1!J~v2!dv1dv21E h* ~v1 ,v2 ,t !g1~v2 ,t !a~v2 ,t !J~v1!J~v2!dv1dv21E h* ~v1 ,v2 ,t !

3g1~v3 ,t !a* ~v3 ,t !a~v1 ,t !a~v2 ,t !J~v1!J~v2!J~v3!dv1dv2dv3 , ~24!

B2~ t !5A2~ f 1→ f 2 ,g1→g2!, ~25!

C2~ t !52F E h* ~v1,v2,t !h~v1,v2,t !J~v1!J~v2!dv1dv2

1E h* ~v1,v2,t !h~v2,v3,t !a* ~v3,t !a~v1,t !J~v3!J~v2!J~v1!dv1dv2dv3

1E h* ~v1,v2,t !h~v1,v3,t !a* ~v3,t !a~v2,t !J~v1!J~v2!J~v3!dv1dv2dv3

1E h* ~v1,v2,t !h~v3,v2,t !a* ~v3,t !a~v1,t !J~v1,t !J~v1!J~v2!J~v3!dv1dv2dv3

1E h* ~v1,v2,t !h~v3,v1,t !a* ~v3,t !a~v2,t !J~v1!J~v2!J~v3!dv1dv2dv3

1E h* ~v1,v2,t !h~v3,v4,t !a* ~v3,t !a* ~v4,t !a~v1,t !a~v2,t !J~v1!J~v2!J~v3!J~v4!dv1dv2dv3dv4G .
~26!
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Through the new state vector, we depict the numer
result for p(t) at zero temperature and for small values
,a,0.5 ~Fig. 2!. From Fig. 2 we can observe obvious c
herent and damped oscillations. With the increase ofa,
quantum coherence becomes increasingly short-lived. H
ever, the limitation of our method and accuracy of our d
make it impossible for one to resolve oscillations ofp(t) for
a.0.47. From the obvious deviation ofac that resulted
from a different state vector it is clear that the second eff
plays an important role in affecting the dynamical behav
of the system. An expanded view of decay ofp(t) in the
vicinity of the critical valueac50.5 is provided in Fig. 3. In
this region, comparing results for different cutoff frequenc
vc , we observe marked scaling behavior.

To investigate the energy transfer between the system
phonons, another quantityN(t)5^( iai

1ai&, excited phonon
number, is calculated. Its numerical result is shown as Fig

When we associate Fig. 2 and Fig. 4 with Hamitonian~2!,
a clear energy transfer picture emerges. As the coup

FIG. 2. Occupation probability for various damping;a,0.5,
D/vc51/50, e50.

FIG. 3. Scaling behavior of the occupation probability fora
50.48; e50.
l

-
a

t
r

s

nd

4.

g

strength increases, the system energy decreases at a h
speed. Ata50.47, the speed reaches its maximum. Lik
wise, the phonon number increases in the same pattern
t→`, the phonon bath gets to a new thermoequilibriu
Figure 2 just is the macroscopic correspondence to Fig.

The phonon numbersn(t) of three special frequencies ar
shown in Fig. 5. We notice that there exist great variatio
for different v. At vc , the phonon number is almost zer
This result provides a reason for the high energy cutoff: n
or above thevc , the phonon number is so small that i
contribution to the dynamical behavior of the system can
neglected.

III. CONCLUSION

In conclusion, we have introduced a systematic appro
mate method for the dynamics of dissipative quantum s

FIG. 4. The variation of phonon number for various dampin
D/vc51/50, e50.

FIG. 5. A log plot of phonon number of three special freque
cies versusD r(t) for D/vc51/50; a50.47, e50.
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tems and used it to explore the dynamical behavior, for
parameter rangeD/vc550 100 at 0,a,0.5 without a bias.
We found that the critical point at which coherent oscillati
turns into incoherent exponential decay occurs in the vicin
of ac50.5. Most important, our method provides a micr
scopic decription for the dynamical behavior of this syste
through spin-boson interaction, some bosons in the gro
state are stimulated to excited states; the dissipative inte
ys

A.

g-
e

y

:
d
c-

tion causes the transition from two state to single state. I
expected that when the higher (>3) order effect is added
into the state vector, more accurate results will be obtain
and this process can be developed further indefinitely.

In view of the above, we can draw the conclusion that
the dissipative two-state system, our method is valid in sm
coupling, compared to the QMC or NIBA method. Th
might be useful for other quantum dissipative systems.
-

ys.
@1# B. Golding, N.M. Zimmerman, and S.N. Coppersmith, Ph
Rev. Lett.68, 998 ~1992!.

@2# S. Chakravarty and S. Kivelson, Phys. Rev. Lett.50, 1811
~1983!.

@3# S. Chakravarty and A.J. Leggett, Phys. Rev. Lett.52, 5 ~1984!.
@4# A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher,

Garg, and W. Zwerger, Rev. Mod. Phys.59, 1 ~1987!; 67, 725
~1995!.

@5# H. Wipf, D. Steinbinder, K. Neumaier, P. Gutsmiedl, A. Ma
erl, and A.J. Dianoux, Europhys. Lett.4, 1379~1987!.

@6# S. Chakravarty and J. Rudnick, Phys. Rev. Lett.75, 501
. ~1995!.
@7# T. A. Costi, Phys. Rev. Lett.80, 1038~1998!.
@8# S. Chakravarty, Phys. Rev. Lett.49, 681 ~1982!.
@9# A.J. Bray and M.A. Moore, Phys. Rev. Lett.49, 1545~1982!.

@10# J.W. Negele and H. Orland, inQuantum Many-Particle Sys
tems, edited by D. Pines~Addison-Wesley, Reading, MA,
1987!, p. 23.

@11# A. Garg, Phys. Rev. Lett.77, 964 ~1996!.
@12# Reinhold Egger, Hermann Grabbert, and Ulrich Weiss, Ph

Rev. E55, 3809~1997!.


